Кальций в природе

Биологическая роль кальция

Кальций необходим почти для всех живых существ. Он образует строительные блоки человеческого скелета (в виде фосфата кальция), раковины моллюсков и ракообразных (в виде карбоната кальция). Кости не статичны, как считают многие. Они обновляются при переломах, когда для восстановления костной ткани необходимо очень много кальция. Суточная норма кальция для детей, пожилых людей и беременных составляет 1–1.5 мг, а для здоровых и взрослых — минимум 1 мг. Источники кальция — молочные продукты, молочный шоколад, брокколи и капуста, красная фасоль. Усвоению кальция мешают животные жиры, в том числе и молочные! Поэтому лучше употреблять обезжиренные молочные продукты. Кроме того, кальций хуже усваивается в сочетании с пальмовым маслом: образующиеся стеараты и пальмитаты кальция просто выводятся из организма.

Кальций необходим для множества процессов в теле человека. Когда развивается дефицит кальция, организм начинает компенсировать недостаток этого элемента, забирая его из костей. Если эту потерю не восполнять, могут возникнуть проблемы с костями, например, остеопороз. Это связано с тем, что с возрастом становится всё сложнее удерживать баланс кальция в организме. Усваивать его нам помогает витамин D, который содержится в рыбьем жире, морепродуктах, яйцах и некоторых молочных продуктах.

Свойства щелочноземельных металлов

Щелочноземельные металлы значительно тверже щелочных, их нельзя просто взять и разрежать ножом. Также они тяжелее – их плотность колеблется от 1550 кг/м3 у кальция до 5500 кг/м3 у радия. Цвет щелочноземельных металлов – серый. Температуры плавления этих элементов находятся в диапазоне 650-840°С. Исключение – бериллий, плавящийся лишь при 1278°С.

Чем больше порядковый номер щелочноземельного металла в таблице Менделеева, тем выше его химическая активность. Например, бериллий вообще не взаимодействует с кислородом и по своим свойствам напоминает алюминий. Наиболее активные стронций, барий и радий приходится хранить в керосине, также как и щелочные металлы.

Свойства Периодической системы элементов

Расположение химических элементов в таблице Менделеева позволяет сопоставлять не только их атомные массы, но и химические свойства. 

Вот как они изменяются в пределах группы (сверху вниз):

  • Металлические свойства усиливаются, неметаллические ослабевают.
  • Увеличивается атомный радиус.
  • Усиливаются основные свойства гидроксидов и кислотные свойства водородных соединений неметаллов.

В пределах периодов (слева направо) свойства элементов меняются следующим образом:

  • Металлические свойства ослабевают, неметаллические усиливаются. 
  • Уменьшается атомный радиус.
  • Возрастает электроотрицательность. 

Химические свойства алюминия

Алюминий находится в третьей группе периодической системы элементов. Заряд ядра атома алюминия +13, на внешнем электронном слое три электрона.

По строению атомов и положению в периодической системе можно предположить, что у элементов третьей группы металлические свойства должны быть выражены слабее, чем у элементов второй группы. Это действительно так. 

При химических реакциях атом алюминия отдает три электрона внешнего слоя, обращаясь в трех зарядный положительный ион Al3+. Поэтому во всех его устойчивых соединениях алюминий положительно трехвалентен. Его соединения проявляют амфотерные свойства.

Алюминий – химически активный металл и проявляет себя как восстановитель. Однако его активность снижает оксидная пленка, которая образуется на его поверхности. Поэтому во многих реакциях пленка сначала удаляется, а затем осуществляется взаимодействие с веществами. Рассмотрим на конкретных примерах химические свойства алюминия.

  1. Алюминий соединяется с кислородом воздуха и при нагревании и при обыкновенной температуре. На его поверхности быстро образуется тончайшая плотная пленка окиси алюминия. Она трудно проницаема для газов и защищает металл от дальнейшего окисления.

    В раздробленном состоянии и при повышенной температуре алюминий бурно реагирует с кислородом с выделением большого количества тепла. В результате образуется окись алюминия.

    4Al + 3O2 → 2Al2O3

  2. Со многими неметаллами реакции происходят при нагревании.

    2Al + 3S → Al2S3 Al + P → AlP 2Al + N2 → 2AlN 4Al + 3C → Al4C3

  3. С водой взаимодействует при удалении оксидной пленки. Реакция протекает энергично, вытесняя водород из воды.

     2Al + 6H2O → 2Al(OH)3↓ + 3H2

  4. Взаимодействие с кислотами. Опустим алюминиевые стружки в пробирку с соляной или разбавленной серной кислотой. Алюминий растворяется, вытесняя из кислоты водород и образуя соль.

    С концентрированной азотной и серной кислотой не реагирует. Поэтому концентрированная азотная кислота хранится в алюминиевых емкостях и транспортируется в алюминиевых резервуарах.

    С разбавленной азотной кислотой вступает в реакцию с образованием

    N2O, N2 или  NH4NO3. 8Al + 30HNO3 → 8Al(NO3)+ 3N2O + 15H2O

  5. Поскольку алюминий обладает амфотерными свойствами, он характеризуется реакциями со щелочами.
  6. Алюминий взаимодействует с окислами большинства металлов, вытесняя менее активный металл. Этот метод используется в промышленности для получения металлов и называется алюминотермией.

    2Al + Fe2O3 → 2Fe + Al2O3

Кальций называется щелочноземельным металлом, его относят к S — элементам

Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Слово «металл» заимствовано из немецкого языка. Отмечается в «Травнике» Николая Любчанина, написанном в 1534 году: «…злато и серебро всех металей одолеваетъ». Бо́льшая часть металлов присутствует в природе в виде руд и соединений.

Физические свойства кальция и способы получения металла

В обычных условиях кальций находится в твердом агрегатном состоянии. Металл плавится при 842 °С. Кальций является хорошим электро- и теплопроводником. При нагревании он переходит сначала в жидкое, а затем в парообразное состояние и теряет металлические свойства. Металл является очень мягким и режется ножом. Кипит при 1484 °С.

Под давлением кальций теряет металлические свойства и способность к электропроводимости. Но затем металлические свойства восстанавливаются и проявляются свойства сверхпроводника, в несколько раз превышающего по своим показателям остальные элементы.

Кальций долго не удавалось получить без примесей: из-за высокой химической активности этот элемент не встречается в природе в чистом виде. Элемент был открыт в начале XIX века. Кальций как металл впервые синтезировал британский химик Гемфри Дэви. Ученый обнаружил особенности взаимодействия расплавов твердых минералов и солей с электрическим током. В наши дни электролиз солей кальция (смеси хлоридов кальция и калия, смеси фторида и хлорида кальция) остается самым актуальным способом получения металла. Кальций также извлекают из его оксида с помощью алюминотермии — распространенного в металлургии метода.

Молярная масса хлорида кальция (CaCl2), с примерами

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

На воздухе «расплывается» из-за энергичного поглощения влаги. Хорошо растворяется в воде (не гидролизуется). Разлагается концентрированной серной кислотой.

Рис. 1. Хлорид кальция. Внешний вид.

Брутто-формула хлорида кальция – CaCl2. Как известно, молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Mr(CaCl2) = Ar(Ca) + 2×Ar(Cl);

Mr(CaCl2) = 40 + 2×35,5= 40 + 71 = 111.

Молярная масса (М) – это масса 1 моль вещества. Легко показать, что численные значения молярной массы М и относительной молекулярной массы Mr равны, однако первая величина имеет размерность = г/моль, а вторая безразмерна:

M = NA × m (1 молекулы) = NA × Mr × 1 а.е.м. = (NA ×1 а.е.м.) × Mr = × Mr.

Это означает, что молярная масса хлорида кальция равна 111 г/моль.

Сырые материалы для выплавки сплавов кальция

Шихта для углеродотермического производства силикокальция состоит из кварцита, извести, коксика, древесного и каменного угля. Требования к кварциту и восстановителю, используемым при производстве силикокальция, аналогичны предъявляемым при производстве ферросилиция. Крупность материалов для плавки должна быть следующей: кварцита 50—100 мм, коксика 5—20 мм, древесного угля 8—100 мм, каменный уголь должен быть в куске

Известь должна быть свежеобожженной и содержать не менее 94 % СаО. Плохо обожженная известь резко повышает расход электроэнергии и восстановителя, снижает производительность печи, производит к расстройству хода ее и к уменьшению продолжительности кампании. Примерный химический состав известняков используемых для получения извести приведен в табл. 28.

При силикотермическом производстве силикокальция может быть использована известь с вращающихся печей крупностью 0—50 мм, содержащая ≥90 % CaO и ≤0,017 % Р. Однако использование шахтной извести и в этом случае предпочтительно, так как вследствие более высокого содержания CaO экономится ферросилиций, снижается расход электроэнергии и увеличивается производительность печи. Применяемый при силикотермическом производстве силикокальция ферросилиций должен быть гранулированный или дробленый (50 мм и содержать >55 % CaF2 и 7 % SiO2.

В зарубежной практике производства силикокальция исходным материалом часто является технический карбид кальция, имеющий примерно следующий состав: 78 % CaC2, 17 % CaO и 5 % примесей MgO, Fe2O3, Al2O3, SiO2 и др. Получают его плавкой в мощных (до 100 MB А) электропечах из извести и углеродистого восстановителя при расходе электроэнергии 9000 МДж/т (~2500 кВт-ч/т).

Соединения кальция и магния

Ключевые слова конспекта: соединения кальция, соединения магния и кальция, гашеная известь, негашеная известь, гидрооксид кальция, оксид кальция, сульфат кальция, гипс, алебастр, карбонат кальция, мел, мрамор, известняк, кальцит, фосфорит, фосфоритная мука, хлорид кальция, карбид кальция, ацетилен, жесткость воды.

СОЕДИНЕНИЯ КАЛЬЦИЯ

Перечислим наиболее часто используемые соединения кальция.

Оксид кальция СаО – негашёная известь. При взаимодействии с водой происходит гашение извести, при этом выделяется много тепла:

СаО + H2O = Са(ОН)2

Гидроксид кальция Са(ОН)2– гашёная известь. Раствор гидроксида кальция – известковая вода. Известковая вода поглощает углекислый газ, происходит помутнение вследствие образования нерастворимого карбоната кальция:

Са(ОН)2 + СO2 = СаСO3↓ + H2O

При пропускании избытка углекислого газа помутнение исчезает, образуется растворимый в воде гидрокарбонат кальция:

СаСO3 + H2O + СO2 = Са(НСO3)2

Сульфат кальция двухводный CaSO4 • 2Н2О – гипс, а другой кристаллогидрат сульфата кальция – 2CaSO4 • H2O – алебастр. Гипс и алебастр используются в строительстве, медицине и для изготовления декоративных изделий.

Карбонат кальция СаСО3 – это мел, мрамор, известняк, кальцит (исландский шпат).

Ортофосфат кальция Са3(РO4)2 – фосфорит, фосфоритная мука. Используется как фосфорное удобрение.

Чистый безводный хлорид кальция СаCl2 чрезвычайно гигроскопичен, поэтому широко применяется в лаборатории как осушитель в виде гранул. В медицине используется 10%-й раствор хлорида кальция. Ионы Са2+ способствуют хорошей сворачиваемости крови.

Карбид кальция СаС2 используется для получения ацетилена:

Его получают в электропечах при нагревании с углём:

СОЕДИНЕНИЯ КАЛЬЦИЯ И МАГНИЯ

Соединения кальция и магния широко распространены в природе. Наличие ионов Са2+ и Mg2+ в природных водах обусловливает особые свойства воды, которые называют её жёсткостью. В жёсткой воде не мылится мыло (вследствие образования нерастворимых солей кальция и магния – стеаратов кальция и магния), при нагревании жёсткой воды образуется накипь и т. д.

Временная жёсткость воды обусловлена присутствием в качестве катионов – ионов кальция и магния, а в качестве анионов – гидрокарбонат-ионов. Такую жёсткость воды можно устранить даже кипячением: 

Так ионы кальция оказываются связанными с карбонат-ионами в осадке – карбонате кальция. Концентрация ионов кальция в растворе заметно уменьшается, вода становится мягкой.

Другой способ перевода ионов кальция в осадок – добавление к жёсткой воде известковой воды, в этом случае кислая соль переходит в среднюю:

Са(НСО3)2 + Са(ОН)2 = 2CaCO3↓ + 2H2O

Можно умягчать воду с помощью реакций ионного обмена. При взаимодействии жёсткой воды с раствором соды образуется осадок карбоната кальция:

Са(НСO3)2 + Na2CO3 = CaCO3↓ + 2NaHCO3

Постоянная жёсткость воды обусловлена наличием ионов кальция и магния – в качестве катионов и дигидрофосфат-ионов, хлорид-ионов, нитрат-ионов и др. – в качестве анионов. С таким видом жёсткости воды можно справиться только благодаря реакциям ионного обмена. Надо подобрать такие реакции ионного обмена, в результате которых ионы магния и кальция будут переведены в осадок. Например:

3MgCl2 + 2Na3PO4 = Mg3(PO4)2↓ + 6NaCl

Конспект урока по химии «Соединения кальция и магния». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

Периодический закон

К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.  

Пытался решить эту задачу и молодой русский профессор Д.И. Менделеев. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически.

Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так: 

Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.

Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов. 

<<Форма демодоступа>>

Во-первых, многочисленные эксперименты позволили Менделееву сделать вывод, что атомные массы некоторых элементов ранее были вычислены неправильно, и он изменил их в соответствии со своей системой. 

Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства.  


‍Первый вариант Периодической таблицы элементов, составленной Д.И. Менделеевым.  ‍

Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий. Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших (и даже не всегда возможных в реальности) опытов — теперь стало достаточно одного взгляда в таблицу. 

Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.

Где используют кальций

Исходя из этих свойств кальций применяют:

  1. В промышленности для получения чистых металлов благодаря реакции восстановления. Кальций также применяется для получения трудно восстанавливаемых металлов вроде хрома, урана и тория.
  2. В электронике, где сплав кальция со свинцом применяют в аккумуляторах.
  3. Кальций отлично подходит для получения новых элементов таблицы Менделеева благодаря своему тяжелому изотопу, который очень устойчив.
  4. Кальций находится в скелете и зубах, поэтому без него эти биологические конструкции становятся ломкими и разрушаются. Поэтому кальций применяется в медицине и пищевой промышленности при создании специальных таблеток, содержащих небольшие дозы кальция, который способен усвоиться организмом. Помимо этого кальций регулирует множество других функций организма и играет огромную роль в жизнедеятельности.

Но все это было бы невозможно, если бы кальций не смогли получить в чистом виде.

ОПРЕДЕЛЕНИЕ

Кальций
— двадцатый элемент Периодической таблицы. Обозначение — Ca от латинского «calcium». Расположен в четвертом периоде, IIА группе. Относится к металлам. Заряд ядра равен 20.

Кальций принадлежит к числу самых распространенных в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Он встречается в виде многочисленных отложений известняков и мела, а также мрамора, которые представляют собой природные разновидности карбоната кальция CaCO 3 . В больших количествах встречаются также гипс CaSO 4 ×2H 2 O, фосфорит Ca 3 (PO 4) 2 и, наконец, различные содержащие кальций силикаты.

В виде простого вещества кальций представляет собой ковкий, довольно твердый металл белого цвета (рис.1). На воздухе быстро покрывается слоем оксида, а при нагревании сгорает ярким красноватым пламенем. С холодной водой кальций реагирует сравнительно медленно, но из горячей воды быстро вытесняет водород, образуя гидроксид.

Рис. 1. Кальций. Внешний вид.

Биологическая роль металлов и неметаллов

В организмах содержится множество различных металлов и неметаллов. Различных химических элементов в организме может не хватать, поэтому приходится потреблять их извне.Химические элементы можно разделить на две большие группы – макроэлементы и микроэлементы.

К макроэлементам относятся вещества, содержание которых в организме превышает 0,005 %. Эта группа включает водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.Микроэлементы – элементы, содержание которых не превышает 0,005%. К ним относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор. Каждый макро- и микроэлемент в организме выполняет определенную функцию.

Свойства едкой щелочи

Гидроокись (гидроксид) натрия называют также едким натром, едкой щёлочью (такое название обусловлено способностью вещества разъедать стекло, кожу, бумагу, вызывать сильнейшие химические ожоги) и каустической содой (каустик — от греч. kaustikos жгучий, едкий).

Физические свойства

Гидроксид натрия выпускается в виде гранул белого цвета, скользких на ощупь.

Растворение вещества в воде, происходит с выделением большого количества тепла. Гидроксид натрия является гигроскопичным веществом, т. е. он активно поглощает водяные пары из воздуха. А также каустик способен поглощать углекислый газ, образуя на воздухе NaНCO3.

Молярная масса NaOH равна 39,997 г/моль, плотность вещества 2,02 г/см3, растворимость в воде 108,7 г/100 мл, температуры кипения и плавления для каустической соды равны соответственно 1403 °C и 323 °C.

Молекулы гидроокиси натрия полностью диссоциируют на ионы в водных растворах, а значит едкий натр — сильное основание. Водные растворы гидроокиси натрия обладают сильнейшей щелочной реакцией (pH 1%-раствора = 13).

Химические свойства

NaOH способен вступать в реакции с кислотами (серной H2SO4, угольной H2CO3, соляной HCl и другими), в результате чего образуются соли и вода:

  • 2NaOH + H2CO3 → Na2СO3 + 2H2O,
  • 2NaOH + H2SO4 → Na2SO4 + 2H2O.

С кислотными оксидами в результате взаимодействия образуются соль и вода:

  • SiO2 + 2NaOH → Na2SiO3 + H2O,
  • 2NaOH + SO2 → Na2SO3 + H2O.

C основными оксидами реакция не идёт: MgO/ Bao /CaO + NaOH ≠.

C амфотерными оксидами гидроксид натрия также образует соли и воду: ZnO + 2NaOH + H2O → Na2 (раствор).

C солями гидроокись натрия реагирует при условии, что в результате будет образовано нерастворимое как, например, в реакции с сульфатом меди (CuSO4 + NaOH), газообразное вещество или вода:

  • Fe2 (SO4)3 + 6NaOH → 2Fe (OH)3↓ + 3Na2SO4,
  • CuSO4 + 2NaOH → Cu (OH)2↓ + Na2SO4,
  • CuCl2 + 2NaOH → Cu (OH)2↓ + 2NaCl.

C неметаллами:

  • с фосфором 3NaOH + 4P + 3H2O → 3NaH2PO4 + PH3,
  • с серой 6NaOH + 3S → 2Na2S + Na2SO3 + 3H2O.

C металлами гидроокись натрия реагирует с цинком (Zn), алюминием (Al), титаном (Ti). C железом же и медью NaOH не взаимодействует. Примеры:

  • Zn + 2NaOH + 2H2O → H2↑ + Na2 тетрагидроксицинкат натрия,
  • 2NaOH + 2Al + 6H2O → 3H2↑ + 2Na тетрагидроксиалюминат натрия.

C жирами щёлочь реагирует с образованием мыла: (C17H35COO)3C3H5 + 3NaOH → C3H5 (OH)3 + 3C17H35COONa.

Основное и возбужденное состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s    2s     2p 

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s    2s     2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Свойства кальция

В промышленности часто используют именно химические свойства кальция:

  • Кальций легко соединяется и взаимодействует с кислородом, углекислым газом и влажным воздухом. Именно поэтому кальций в лаборатории хранят в закрытом боксе под слоем керосина или парафина, чтобы избежать взаимодействия с окружающей средой и порчей материала.
  • Кальций активно взаимодействует с водой, с активными неметаллами.
  • С менее активными элементами неметаллического происхождения кальций взаимодействует только при нагревании. При этом, если такое соединение поместить в воду, то оно распадается. Поэтому нередко под земной корой образуются гигантские пустые полости.
  • Если в воде присутствует гидрокарбонат кальция, то при кипячении воды он распадается и появляется осадок, который мы называем накипью.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector