Гидроксид натрия
Содержание:
- Виды гидролиза
- В чем может содержаться
- Применение
- Что такое гидроксид натрия
- Физические свойства гидроксида натрия:
- Химические свойства
- Особенности транспортировки
- Правила безопасности
- Что это такое
- Упаковка, транспортировка и хранение каустической соды
- Опасные свойства каустической соды
- Теги
- Физико-химические свойства
- Характеристики
- Класс опасности каустической соды
- Области применения
- Химические характеристики каустической соды
- Определение гидролиза
Виды гидролиза
Мы выяснили, что в составе соли может быть слабый ион, который и отвечает за гидролизацию. Он находится в основании, в кислотном остатке или в обоих компонентах, и от этого зависит тип гидролиза.
Соль с сильным основанием и сильной кислотой
Гидролиз отсутствует. Как вы уже знаете, при наличии сильного основания и сильного кислотного остатка соль не распадается при взаимодействии с водой. Так, например, невозможен гидролиз хлорида натрия (NaCl), поскольку в составе этого вещества нет слабых ионов. К таким же не подверженным гидролизации солям относят KClO4, Ba(NO3)2 и т. д.
Среда водного раствора — нейтральная, т. е. pH = 7.
Реакция индикаторов: не меняют свой цвет (лакмус остается фиолетовым, а фенолфталеин — бесцветным).
Соль со слабым основанием и сильной кислотой
Гидролиз по катиону. Как мы помним, гидролизация происходит только при наличии слабого иона, в данном случае — иона основания. Его катион вступает в реакцию и связывает гидроксид-ионы воды OH−. В итоге образуется раствор с избытком ионов водорода H+.
Среда водного раствора — кислая, pH меньше 7.
Реакция индикаторов: фенолфталеин остается бесцветным, лакмус и метиловый оранжевый — краснеют.
Пример:
Нитрат аммония NH4NO3 состоит из слабого основания NH4OH и сильного кислотного остатка HNO3, поэтому он гидролизуется по катиону, то есть его катион NH4+ связывает ионы воды OH−.
Молекулярное уравнение: NH4NO3 + H2O NH4OH + HNO3
Ионное уравнение: NH4+ + NO3− + HOH NH4OH + H+ + NO3−
Соль с сильным основанием и слабой кислотой
Гидролиз по аниону. Если слабым оказывается ион кислотного остатка, его отрицательно заряженная частица (анион) взаимодействует с катионом водорода H+ в молекуле воды. В итоге получается раствор с повышенным содержанием OH−.
Среда водного раствора — щелочная, pH больше 7.
Реакция индикаторов: фенолфталеин становится малиновым, лакмус — синим, а метиловый оранжевый желтеет.
Пример:
Нитрат калия KNO2 отличается сильным основанием KOH и слабым кислотным остатком HNO2, поэтому он гидролизуется по аниону. Другими словами, анион кислоты NO2− связывает ионы воды H+.
Молекулярное уравнение: KNO2 + H2O HNO2 + KOH
Ионное уравнение: K+ + NO2− + HOH HNO2 + K+ + OH−
Гидролиз по катиону и аниону. Если у соли оба компонента — слабые, при взаимодействии с водой в реакцию вступает и анион, и катион. При этом катион основания связывает ионы воды OH− а анион кислоты связывает ионы H+
Среда водного раствора: нейтральная, слабокислая или слабощелочная.
Реакция индикаторов: могут не изменить свой цвет.
Пример:
Цианид аммония NH4CN включает слабое основание NH4OH и слабую кислоту HCN.
Молекулярное уравнение: NH4CN + H2O NH4OH + HCN
Ионное уравнение: NH4+ + CN− + HOH NH4OH + HCN
Среда в данном случае будет слабощелочной.
Обобщим все эти сведения в таблице гидролиза солей.
Важно!
При взаимодействии гидрофосфатов с водой среда всегда будет щелочной. Дигидрофосфаты, гидросульфиты и гидросульфаты всегда дают кислую среду, независимо от силы основания
Например, гидросульфит натрия имеет сильное основание и слабую кислоту, исходя из чего можно было бы предположить образование щелочной среды. Но ввиду особенностей диссоциации в водном растворе pH будет меньше 7 (кислая среда).
Ступенчатый гидролиз
Любой из видов гидролиза может проходить ступенчато. Так бывает в тех случаях, когда с водой взаимодействует соль с многозарядными катионами и анионами. Сколько ступеней будет включать процесс — зависит от числового заряда иона, отвечающего за гидролиз.
Как определить количество ступеней:
-
если соль содержит слабую многоосновную кислоту — число ступеней равняется основности этой кислоты;
-
если соль содержит слабое многокислотное основание — число ступеней определяют по кислотности основания.
Для примера рассмотрим гидролиз карбоната калия K2CO3. У нас есть двухосновная слабая кислота H2CO3, а значит, гидролизация пройдет по аниону в две ступени.
I ступень: K2CO3+HOH KOH+KHCO3, итогом которой стало получение гидроксида калия (KOH) и кислой соли (KHCO3).
II ступень: K2HCO3+HOH KOH+H2CO3, в итоге получился тот же гидроксид калия (KOH) и слабая угольная кислота (H2CO3).
Для приблизительных расчетов обычно принимают в учет только результаты первой ступени.
Важно!
Определить среду водного раствора, получившегося в результате гидролиза кислых солей, бывает непросто. В данном случае кроме гидролизации одновременно идет диссоциация аниона соли, и какой будет среда — зависит от преобладания того или иного процесса
Если преобладает гидролиз — среда щелочная, если диссоциация — кислая.
В чем может содержаться
Пищевая добавка Е524 может содержаться в самых разных группах продукции, в которых выполняет самые разные функции. Взять хотя бы джемы и мармелады, в составе которых часто содержится гидроксид натрия. В этой группе продуктов добавка играет роль регулятора и стабилизатора уровня кислотности. Если добавить некоторое количество едкого натра в тесто для выпечки, то готовая продукция получит красивую румяную хрустящую корочку.
Самая известная сдоба, приготовленная с использованием каустической соды – это немецкие рогалики. Черные консервированные оливки получают свой темный цвет и характерную консистенцию также благодаря добавке Е524. В изделиях из шоколада, какао, сливочного масла или других видов жиров гидроксид натрия ускоряет расщепление белков. Эта добавка приходит на помощь и тогда, когда необходимо быстро и без труда очистить плоды от кожицы. Для этого фрукты, ягоды или овощи просто обрабатывают каустической содой. Кроме того, регулятор кислотности Е524 используют в производстве кисломолочной продукции, маргаринов, мороженого, разных видов сладостей.
Гидроксид натрия – опасное химическое соединение
И хоть в пищевой промышленности Е524 используется в небольших дозах, которые обычно не представляют опасности для человека, излишняя осторожность не повредит. Если не желаете или не можете отказаться от Е-содержащей пищи сами, то постарайтесь хотя бы минимизировать количество «ешек» в рационе маленьких детей
А для этого не забывайте перед покупкой продукта проверять, из чего он состоит.
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Будем признательны, если воспользуетесь кнопочками:
Применение
Биодизельное топливо
Получение биодизеля
Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:
Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.
Для омыления жиров при производстве мыла, шампуня и других моющих средств
В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 году нашей эры Теодор Присцианус
Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия), нагретые до +50…+60 °C, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
Для изготовления биодизельного топлива — получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число — условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьём для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин, который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay.
В качестве агента для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей (наряду с гидроксидом калия). Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
В гражданской обороне для дегазации и нейтрализации отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
В текстильной промышленности — для мерсеризации хлопка и шерсти. При кратковременной обработке едким натром с последующей промывкой волокно приобретает прочность и шелковистый блеск.
Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E-524. Некоторые блюда готовятся с применением каустика:лютефиск — скандинавское блюдо из рыбы — сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
брецель — немецкие крендели — перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.
В косметологии для удаления ороговевших участков кожи, бородавок, папиллом.
В фотографии — как ускоряющее вещество в проявителях для высокоскоростной обработки фотографических материалов.
Что такое гидроксид натрия
Это соединение – едкая щелочь, которая применяется не только пищевой, фармацевтической и косметической сферами, но и химической промышленностью. Гидроокись натрия, или каустическая сода, выпускается в виде немного скользких твердых гранул желтоватого или белого цвета. При сильной концентрации NaOH разъедает органические соединения, поэтому способен вызвать ожог. Используется как пищевая добавка Е524, необходимая для поддержания консистенции продуктов.
Формула
Вещество имеет химическую формулу NaOH. Соединение взаимодействует с различными веществами любых агрегатных состояний, нейтрализуя их, с кислотами, образуя соль и воду. Реакция с атмосферными оксидами и гидроксидами позволяет получить тетрагидроксоцинкат или алкоголят. Едкий натр применяется для осаждения металлов. Например, при реакции с сульфатом алюминия образуется его гидроксид. Осадок не растворяется и не наблюдается избыточное получение щелочи. Это актуально при очистке воды от мелких взвесей.
Свойства
Соединение растворяется в воде. Технический Sodium Hydroxide представляет собой водный раствор гидроксида натрия в щелочеустойчивой герметичной таре. При взаимодействии с водой каустик выделяет большое количество тепла. Вещество имеет следующие свойства:
- при предварительном расплавлении разрушает стекло, фарфор;
- взаимодействие с аммиаком вызывает пожароопасную ситуацию;
- кипит при 1390°С, плавится, если температура достигает 318°С;
- не растворяется в эфирах, ацетоне;
- очень гигроскопичен (поглощает пары воды из воздуха), поэтому натриевая щелочь должна храниться в сухом месте и герметичной упаковке;
- растворяется в метаноле, глицерине, этаноле;
- бурно взаимодействует с металлами – оловом, гидроксидом алюминия, свинцом, цинком, образует водород – взрывоопасный горючий яд;
- поглощает углекислый газ из воздуха.
Получение
Каустическая сода встречается в составе минерала брусита. Второе по величине месторождение сконцентрировано на территории России. Гидроокись благодаря исследованиям Николы Леблана, проведенным в 1787 г., получают методом синтеза из хлористого натрия. Позже востребованным способом добычи стал электролиз. С 1882 г. ученые разработали ферритный метод получения в лаборатории гидроксида с помощью кальцинированной соды. Электрохимический способ сейчас самый популярный: ионы натрия образуют его раствор едкой ртути – амальгаму, которая растворяется водой.
Физические свойства гидроксида натрия:
Наименование параметра: | Значение: |
Химическая формула | NaOН |
Синонимы и названия иностранном языке | sodium hydroxide (англ.) едкий натр (рус.)
натрия гидроокись (рус.) сода каустическая (рус.) |
Тип вещества | неорганическое |
Внешний вид | бесцветные ромбические кристаллы |
Цвет | белый, бесцветный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 | 2130 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 | 2,13 |
Температура кипения, °C | 1403 |
Температура плавления, °C | 323 |
Гигроскопичность | высокая гигроскопичность |
Молярная масса, г/моль | 39,997 |
* Примечание:
— нет данных.
Химические свойства
Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.
Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH−), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.
Гидроксид натрия вступает в следующие реакции:
- с кислотами, амфотерными оксидами и гидроксидами
c кислотами — с образованием солей и воды:
-
- NaOH + HCl → NaCl + H2O
-
- NaOH + H2S → NaHS + H2O (кислая соль, при отношении 1:1)
-
- 2NaOH + H2S → Na2S + 2H2O (в избытке NaOH)
Общая реакция в ионном виде:
-
- OH− + H+ → H2O
с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
-
- 2NaOH + ZnO →ot Na2ZnO2 + H2O — при сплавлении
-
- 2NaOH + ZnO + H2O → Na2[Zn(OH)4] — в растворе
- с амфотерными гидроксидами
-
- NaOH + Al(OH)3 →ot NaAlO2 + 2H2O — при сплавлении
-
- 3NaOH + Al(OH)3 → Na3[Al(OH)6] — в растворе
- с солями в растворе
-
- 2NaOH + CuSO4 → Cu(OH)2↓ + Na2SO4
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.
- c неметаллами
например, с фосфором — с образованием гипофосфита натрия:
- 4P + 3NaOH + 3H2O → PH3↑ + 3NaH2PO2
с серой:
-
- 3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O
- с галогенами
-
- 2NaOH + Cl2 → NaClO + NaCl + H2O (дисмутация хлора при комнатной температуре)
-
- 6NaOH + 3Cl2 → NaClO3 + 5NaCl + 3H2O (дисмутация хлора при нагревании раствора)
- с металлами
Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:
-
- 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2
Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.
- с эфирами, амидами и алкилгалогенидами (гидролиз):
Гидролиз эфиров
с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.
- с многоатомными спиртами — с образованием алкоголятов:
-
- HOCH2CH2OH + 2NaOH → NaOCH2CH2ONa + 2H2O
Особенности транспортировки
Перевозка осуществляется в мешках, бочках, цистернах грузовыми автомобилями, железной дорогой, баржами. Должны соблюдаться требования к перемещению опасных грузов соответствующим видом транспорта. Товар необходимо защищать от влаги, удалить от источников тепла.
Выбранная тара должна отвечать требованиям к упаковке опасных грузов согласно ГОСТ 26319 84.
Соду марки РД перевозят только автомобилями в специальных контейнерах. Он должен заполняться на 98%. Закрывающая часть контейнера должна уплотняться химически устойчивой резиновой прокладкой (ГОСТ 7338-90).
На каждое грузовое место наносятся специальные знаки:
- маркировка, характеризующая опасность груза – по ГОСТ 19433-88;
- предупредительная маркировка – по ГОСТ 31340-2013.
Знаки выполняются способом, описанным в ГОСТ 14192-96.
В нашей следующей статье мы поговорим об Эмали ПФ-115
Правила безопасности
При применении каустической соды нужно соблюдать следующие меры безопасности:
- Использовать респиратор и защитные перчатки.
- Хранить вещество в темной и недоступном для детей и животных месте.
- Применять строго по инструкции, соблюдая пропорции.
Требования к условиям хранения
Каустическую соду рекомендуется хранить в сухом и темном месте, в герметичной упаковке. Крышка должна быть плотно закрыта, следует избегать попадания солнечных лучей на вещество. Место для хранения лучше подобрать такое, чтобы ни животные, ни дети не смогли до него добраться.
Возможные последствия
Неправильное хранение может привести к отравлению домашних животных, которые могут случайно проглотить небольшое количество вещества. А если ребенок доберется до каустика, то вполне может получить ожог кожи или слизистой оболочки. В данных случаях необходимо непременно обратиться за помощью к врачу
Следует обращать внимание на срок годности, по его истечении, каустик становится менее эффективным и от его использования лучше отказаться
Какие вещи можно замачивать в каустической соде?
В каустической соде можно замачивать белые вещи. Так как данное вещество щелочь, то она отлично справится с трудно выводимыми пятнами. Не рекомендуется замачивать белье из хлопка и других тонких тканей, каустик может его испортить.
Можно ли использовать каустическую соду для мытья рук?
Каустическую соду можно использовать для мытья рук, только при этом ее сначала нужно развести в воде, а потом приступать к мытью. Для приготовления раствора на 5 л требуется 1–2 ст. л. каустика, если положить больше щелочи, то на кожном покрове может появиться ожог. Каустик для мытья рук используют в качестве антисептика.
Что делать при ожоге каустиком?
Если каустик попал на слизистую, то рекомендуется промыть это место 2% борной кислотой, а если попадание на кожу, то 5% уксусом, разбавив оба вещества в небольшом количестве холодной воды. Только после этого, можно приступить к обработке участков с ожогом от каустика.
Хоть каустическая сода и относится к опасным химическим веществам, эффективность от ее применения вряд ли кого оставит равнодушным. Главное следовать инструкции и строго соблюдать пропорции и тогда никаких проблем не возникнет, а ваша посуда и канализация еще долгое время не будет нуждаться в очищении.
Что это такое
По традиции, как было, например, с глауберовой солью или аммиаком, начинаю с названий. Так уже исторически сложилось, что почти у всех химических веществ не одно, а несколько названий. Посмотрите, как по-другому можно назвать гидроксид натрия:
По своему виду это твердые белые кристаллы, которые очень легко впитывают в себя воду, даже ту, которая есть в воздухе, а вместе с ними – и содержащийся в воздухе углекислый газ. Поэтому, если это вещество хранить в открытой или неплотно закрытой таре, то можно в итоге запросто получить бесформенную, расплывшуюся белую массу, которую весьма проблематично будет добыть из этой тары. Особенно если она была стеклянная.
Впрочем, сейчас каустик уже практически не хранят в стеклянной посуде, перешли на пластмассовую. Почему? Потому что он вступает в химическую реакцию со стеклом и разъедает, разрушает его. Естественно, не мгновенно, а при длительном хранении. Это называется выщелачивание стекла – гидроксид натрия взаимодействует с соединениями кремния, которые входят в состав стекла.
Я уже рассказывала, что, когда организуете свою домашнюю лабораторию и делаете раствор гидроксида натрия, то хранить такой раствор нужно в пластиковой бутылке, но никак не в стеклянной.
Что еще нужно знать про физические свойства этого вещества? Оно хорошо растворяется в воде с выделением достаточно большого количества тепла.
Если вдруг захотите потрогать руками (настоятельно не советую!), то обнаружите эффект мыльных рук. Ну а следом за этим – достаточно чувствительные и долго не заживающие ожоги кожи – едкий натр полностью оправдывает это свое название.
В природе это вещество не встречается, его получают в промышленности химическими или электрохимическими способами. Кстати, используется это вещество в достаточно больших количествах – около 60 миллионов тон в год во всем мире. Для чего? Давайте посмотрим.
Упаковка, транспортировка и хранение каустической соды
Технический едкий натр транспортируют железнодорожным, автомобильным, водным транспортом в крытых транспортных средствах в упаковке и наливом в железнодорожных и автомобильных цистернах, полиэтиленовых контейнерах, канистрах, в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.
Технический едкий натр, марки РД, залитый в специализированные контейнеры, транспортируют только автомобильным транспортом. Раствор технического едкого натра хранят в закрытых емкостях из материала, стойкого к щелочам. Специализированные контейнеры заполняют продуктом на 98 % их вместимости.
Перед заполнением продуктом канистры и специализированные контейнеры должны быть промыты.
Горловины специализированных контейнеров уплотняют резиновыми прокладками, изготовленными из кислотощелочестойкой резины средней твердости по ГОСТ 7338.
При хранении натра едкого, марки РД, необходимо соблюдения температурного режима в складских помещениях
Технический едкий натр, марки ТР, упакован в полипропиленовый мешок 25 кг, с полиэтиленовым вкладышем. Упакованный продукт хранят в складских неотапливаемых помещениях в штабелях, высотой до 3 метров.
Гарантийный срок хранения — один год со дня изготовления.
Опасные свойства каустической соды
Каустическая сода – довольно опасное вещество. На коже и слизистых оболочках при контакте с ней образуются глубокие и очень болезненные раны. Очень опасен контакт каустической соды с глазами, так как вызывает атрофию зрительного нерва, что ведет к слепоте. Если случайно вдохнуть порошок едкого натра, начнется приступ сильного кашля, одышка, появится боль в горле и даже возможен отек дыхательных легких. И можно только представить себе, что это вещество способно делать с нашими внутренними органами. Если случайно проглотить каустическую соду, очень быстро в животе появится сильная боль и чувство жжения, возможен анафилактический шок
При малейшем подозрении на отравление гидроксидом натрия важно немедленно вызвать скорую помощь. Участки кожи, пораженные едким натром, следует промыть несильным раствором борной или уксусной кислоты, слизистые оболочки – чистой водой, глаза – сначала обработать очень слабым раствором борной кислоты, а затем водой
Хоть в пищевой промышленности гидроксид натрия используют в микродозах, но при регулярном употреблении пищи, содержащей Е524, возможны побочные эффекты.
Теги
раствора гидроксида натрия гидроксид натриявзаимодействия гидроксида натриягидроксида натрия сгидроксид натрия гидроксида натрия снитрат натрия игидроксид натрия нитрата натрия гидроксида натрия иуравнение реакции уравнение реакции уравнение реакции. реакции нейтрализациихимические реакции уравнение реакции имеет
химияответвопросыионноеязыкфизикеуравнениеегэдругимзаданиерезультатесайтавидrarrданohполучениеглавнаяменязнаешьнужнорегистрациябесцветнойпервоеназадимязадачиявляетсякомментариионлайнбытьрешениебиологияхлоридтолькотакоекоторое
Физико-химические свойства
Химические свойства гидроксида натрия, в основном , связаны с гидроксидом иона HO — который является сильным основанием . Кроме того, гидроксид натрия реагирует с диоксидом углерода (CO 2) из воздуха и карбоната.
Растворимость
Кривая растворимости гидроксида натрия в воде.
Растворимость каустической соды в воде увеличивается с температурой, при постоянном давлении или давлении окружающей среды. Это 1090 г / л при 20 ° C (50% раствор) и достиг 3137 г / л при 80 ° C .
Эта высокая растворимость, намного выше, чем, например, у извести или других гидроксидов щелочноземельных металлов, обилие промышленного производства и более низкая себестоимость, чем едкий калий , делают его наиболее широко используемой минеральной базой в мире.
Физические свойства при 20 ° C
Изменение плотности водного раствора в зависимости от концентрации:
Массовая концентрация (% m ) | Молярность (моль растворенного вещества на литр раствора: моль⋅л -1 ) | Плотность (г⋅см −3 ) |
---|---|---|
0,5 | 0,125 | 1,0039 |
1.0 | 0,252 | 1,0095 |
2.0 | 0,510 | 1,0207 |
3.0 | 0,774 | 1.0318 |
4.0 | 1.043 | 1,0428 |
5.0 | 1,317 | 1,0538 |
6.0 | 1,597 | 1,0648 |
7.0 | 1883 | 1,0758 |
8.0 | 2,174 | 1,0869 |
9.0 | 2,470 | 1.0979 |
10.0 | 2,772 | 1,1089 |
11.0 | 3,080 | 1,1199 |
12.0 | 3,393 | 1,1309 |
13.0 | 3 711 | 1,1419 |
14.0 | 4,036 | 1,1530 |
15.0 | 4,365 | 1,1640 |
16.0 | 4 701 | 1,1751 |
17.0 | 5,041 | 1,1861 |
18.0 | 5,387 | 1,1971 |
19.0 | 5,739 | 1,2082 |
20,0 | 6.096 | 1,2192 |
22,0 | 6,827 | 1,2412 |
24,0 | 7,579 | 1,2631 |
26,0 | 8,352 | 1,2848 |
28,0 | 9,145 | 1,3064 |
30,0 | 9,958 | 1,3277 |
32,0 | 10 791 | 1,3488 |
34,0 | 11,643 | 1,3697 |
36,0 | 12,512 | 1,3901 |
38,0 | 13 398 | 1,4102 |
40,0 | 14 300 | 1,4299 |
Характеристики
Химическая формула каустической соды — NaOH. Исходя из метода производства каустик бывает:
- твердая. Она представляет собой рассыпчатый белый порошок, не имеющий аромата и состоящий из чешуек или гранул. Ее удельная масса составляет 2,13 г/см3 при 20°С
- жидкая. Такая сода представляет собой бесцветный прозрачный раствор. Может наблюдаться небольшой осадок. Уровень концентрации составляет 44-50%. Раствор каустической соды имеет температуру кипения при атмосферном давлении 140-145°С, а замерзания +7 до +12°С.
Сода каустическая гранулированная имеет следующие особенности:
- токсична (ядовита)
- в жидком виде – летуча (испаряется)
- в твердом виде – гигроскопична (активно поглощает влагу из атмосферы).
Запомните, что нагревание гидроксида натрия может привести к взрыву.
Каустическая сода активно взаимодействует с материалами и химическими соединениями:
- приводит к разъеданию органические вещества (кожи, ткани, бумаги)
- реагирует с легкими металлами, алюминием, цинком, магнием, олово, а также с их сплавами
- приводит к разрушению фарфоровых и стеклянных предметов
- легко растворяется в глицерине, спиртовых растворах, к примеру, этаноле и метаноле
- вступает в реакцию нейтрализации с кислотой, вследствие чего образуется вода и соль.
Каустическая сода не реагирует:
- с металлическими сплавами, такими как хромо никелевая сталь или углеродистая сталь
- с синтетическими полимерами, такими как полиэтилен, поливинилхлорид
- практически со всеми резиновыми материалами
- с ацетоном, поскольку не растворяется в нем.
Стоит соблюдать осторожность при добавлении воды или кислоты к каустической соде, поскольку результатом реакции является выделение большого количества тепла
Класс опасности каустической соды
Едкий натр представляет собой едкое коррозийноактивное вещество. При попадании на кожу вызывает химические ожоги, а при длительном воздействии может вызывать язвы и экземы. Сильно действует на слизистые оболочки. Опасно попадание едкого натра в глаза.
В случае попадания в глаза или на кожу тщательно промыть водой.
Предельно допустимая концентрация аэрозоля едкого натра в воздухе рабочей зоны производственных помещений (ПДК) — 0,5 мг/м3.
При работе с натром едким, необходимо пользоваться индивидуальными средствами защиты: защитными очками, резиновыми перчатками и защитной одеждой.
Каустическая сода пожаро- и взрывобезопасна, относится к вредным веществам 2-го класса опасности по ГОСТ 12.1.007.
Номер ООН 1824
Области применения
Гидроокись натрия применяют в различных областях промышленности, в производстве, а также широко применяется для бытовых нужд:
- производство моющих агентов (мыла, шампуни), средства бытовой химии,
- целлюлозно-бумажная промышленность,
- химическая промышленность (в качестве катализатора или реагента, в аналитической химии для титрования, в нефтепереработке),
- оборонная промышленность использует каустик для нейтрализации отравляющих газов, как агент, очищающий воздух, вдыхаемый через дыхательный аппарат, от углекислого газа,
- текстильная промышленность (обработка хлопковых и шерстяных нитей — мерсеризация),
- пищевая промышленность (в процессе производства множества различных продуктов, таких как хлеб, различные напитки, карамель, мороженое и многое другое),
- косметология (в составах для пилинга),
- фотография (вещество используется в проявлении фотоматериалов).
Химические характеристики каустической соды
Химическая формула: NaOH
Сода каустическая (натр едкий) — это очень сильное химическое основание.
Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13).
При растворении в воде, либо при разбавлении водного раствора, а так же при взаимодействии с кислотами выделяется много тепла.
Натр едкий, взаимодействует с углекислым газом, присутствующим в воздухе, связывает его, в результате чего, со временем, образуется белый осадок — сода кальцинированная (Na2CO3)
Натр едкий активно реагирует с легкими металлами: алюминием, цинком, магнием, оловом и их сплавами, выделяя при этом большое количество водорода.
Натр едкий способен разрушать стекло и фарфор посредством выщелачивания силикатов (за счет взаимодействия с содержащимся в них диоксидом кремния), а также материалы органического происхождения бумагу, кожу, ткани и т.д.
Не вступает во взаимодействие с углеродистой сталью, хромо-никелевой сталью, полиэтилен, поливинилхлорид, а так же со многими резинно-техническими материалами.
Определение гидролиза
Гидролиз — это процесс взаимодействия сложного химического вещества с водой, итогом которого становится разложение молекул этого вещества. Сам термин происходит от двух греческих слов: hydor, что значит «вода», и lysis, то есть «распад». |
Гидролизации подвержены как органические, так и неорганические вещества: углеводы, белки, оксиды, карбиды, соли и т. д. Например, гидролиз органических соединений напрямую связан с пищеварением — с его помощью происходит распад и усвоение клетками организма жиров, белков, углеводов. Но сейчас мы займемся неорганической химией и рассмотрим гидролизацию на примере солей.
Гидролиз солей — это реакция взаимодействия ионов соли с Н+ и ОН− ионами воды, которая ведет к распаду исходного соединения. В результате такого ионного обмена образуется слабый электролит — кислотный, щелочной или нейтральный. |